
Identifying and Killing Rogue Queries
ClustrixDB provides several mechanisms to identify queries that consume a disproportionate amount of system resources. Such queries are typically a
result of poor indexing or bugs in the application.

ClustrixDB supports the following syntax for killing queries:

KILL [QUERY | CONNECTION]
 session_id

Identifying Long Running Queries

The following statement will output the longest running query in the system. It's often the first step that a system administrator will take to identify possible
problems on a misbehaving cluster. The virtual relation provides a great deal of detail about each session's executing state. In addition to current sessions
statements, the connection information and transaction state will also be displayed.

sql> select * from system.sessions where statement_state = 'executing' order by time_in_state_s desc limit 1\G
*************************** 1. row ***************************
 nodeid: 2
 session_id: 99938306
 source_ip: 10.2.2.243
 source_port: 40758
 local_ip: 10.2.14.15
 local_port: 3306
 user: 4099
 database: system
 trx_state: open
 statement_state: executing
 xid: 5832691561615822852
 cpu: 4
 isolation: REPEATABLE-READ
 last_statement: select * from sessions where statement_state = 'executing' order by time_in_state_s desc
limit 1
 time_in_state_s: 0
 created: 2016-01-12 22:01:40
 heap_id: 288230379201751147
 trx_age_s: 0
 trx_mode: autocommit
trx_counter_select: 1
trx_counter_insert: 0
trx_counter_update: 0
trx_counter_delete: 0
 trx_is_writer: 0
1 row in set (0.00 sec)

Identifying Long Running Writer Transactions

In a fully relational SQL database such as ClustrixDB, long running write transactions may cause a problem. Frequently, misbehaving applications
erroneously leave the option , leaving every session to run in a single, very long transaction. When such cases occur, these AUTOCOMMIT OFF
transactions will accrue a large collection of write locks, preventing other transactions that attempt to modify the same data from running. To identify
such cases, ClustrixDB includes several columns in the relation that track the age of the transaction, the number and types of statements sessions
executed in the current transaction, and whether the transaction has issued any writes (boolean value ,). 0 1

For example, to find the oldest write transaction in the system, issue the following:

sql> select * from system.sessions where trx_is_writer order by trx_age desc limit 1\G
*************************** 1. row ***************************
 nodeid: 2
 session_id: 99938306
 source_ip: 10.2.2.243
 source_port: 40758
 local_ip: 10.2.14.15
 local_port: 3306
 user: 4099
 database: sergei
 trx_state: open
 statement_state: executing
 xid: 5832694275126951940
 cpu: 4
 isolation: REPEATABLE-READ
 last_statement: select * from system.sessions where trx_is_writer order by trx_age desc limit 1
 time_in_state_s: 0
 created: 2016-01-12 22:01:40
 heap_id: 288230379201751394
 trx_age_s: 31
 trx_mode: explicit
trx_counter_select: 2
trx_counter_insert: 5
trx_counter_update: 1
trx_counter_delete: 3
 trx_is_writer: 1
1 row in set (0.00 sec)

	Identifying and Killing Rogue Queries

